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We examine the general properties of a monopole anti-monopole bound state. Lifetimes grow 
as the cube of the initial diameter and range, for an SU(5) ( JUT monopole with mass = 2 × 10" 
GcV. from about 43 days for d =  I fm, to I() ~ years for d = 0 . 1  angs t rom We find about 107 
hadrons are produced by fragmentation of gluons that are radiated by classical Larmor radiation. 
In the final burst when the extended cores overlap about 25 fundamental  degrees of freedom of the 
full unified gauge group are produced. We find that such objects would have been pr(~luced in the 
early universe at about the time of helium synthesis and their decay products and l .armor radiation 
may be observable. 

I. Introduction 

If the universe is widely populated by magnetic monopoles it becomes conceivable 
that a monopole-antimonopole bound state, i.e. monopolonium, can be formed in 
the laboratory or may have been formed naturally in the universe at large. Such 
objects, though unstable, have an interesting physical evolution in time, dependent 
upon their masses, their initial classical radii and their core structure. For G U T  
monopoles with masses of the order of 10 ~6 GeV. the lifetimes of monopolonium 
systems range from days, for an initial diameter of about ! fm, up to many times the 
universe' lifetime with diameter of about a tenth of an angstrom or more. While 
behaving as a classical system as long as r > r~ .... they will radiate characteristic 
dipole radiation up to high energies, Mmonopole ~ 1016. Thus a monopolonium system 
provides a window on the physics of elementary processes up to the extremely high 
energy scale characterized by its mass and could, in principle, yield information 
about all of the physics between current accelerator energies and the grand unifica- 
tion scale! A single event would produce, for example, about 10 ~ Z-bosons by 
classical dipole radiation alone. 

In the final annihilation stages the extended cores of the monopole and anti- 
monopole overlap and one expects to produce the elementary gauge and Higgs 
bosons of the full unifying gauge group. This "last  gasp" of the monopolonium 
system is expected to be cataclysmic, releasing 2 × 1016 GeV (about a kilowatt-hour) 
in less than 10-38 sec. We expect here a spectacular explosion of hadrons with a 
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total hadron multiplicity from the entire process of order 107. In the present paper 
we will discuss the expected yields and spectra of hadrons, photons, Z, X, Y, and 
Higgs bosons. Thus, while not quite a "table-top" experiment, the study of mono- 
polonium decay processes, should nature avail, would afford the best experimental 
view of grand unification that one can presently imagine. 

Moreover, in the early universe we will argue that a sizeable and potentially 
detectable abundance of ultra long-lived monopolonium may have been formed. 
Remarkably, we find that this process would have occurred during the relatively late 
period of helium synthesis and depends only upon the assumption of the existence of 
an acceptable abundance of ordinary heavy monopoles at the time. We do not 
address the question of how the universe may have arrived at that epoch with a 
monopole abundance well below the closure density. Rather, we adopt the view that 
we know the universe did indeed pass through such a phase, and if the monopole 
abundance is near the closure density today (if it is not then the detection of 
monopoles in experiments will be virtually impossible), then the existence of a 
substantial relic abundance of monopolonium follows as a logical consequence. For 
G U T  monopoles we find that in a typical cosmologically averaged cubic light year 
containing on average 1032 monopoles, there will be today about 10 ~5 monopolonia 
and roughly 400 decays per year. In galaxies and clusters these abundances and rate 
densities may be significantly larger. There may also exist mechanisms to signifi- 
cantly enhance the formation and we view the above results as conservative lower 
limits. The objects of larger diameter are spinning down producing radio frequency 
radiation from which we may place lower bounds on the masses of G U T monopoles. 
The cataclysmic decay events may produce visible cosmic ray and high-energy 
gamma ray events in large scale earth-bound or orbiting detectors. Indeed, mono- 
polonium may be easier to find than monopoles themselves. In this paper we will 
only discuss the formation of monopolonium in some detail and will defer a 
systematic survey of observational signatures and constraints to a forthcoming work 

[11. 
Much of our discussion will be sufficiently general that it applies to any magnetic 

monopole, regardless of detailed structure, dependent only upon masses, magnetic 
charges and cosmological density of monopoles. Also, much of this discussion is 
presumed valid even for monopoles that are dressed in a few nucleons. The further 
corrections for monopoles dressed by heavy nuclei are no doubt estimable, but 
insofar as relic monopolonium is concerned, we do not expect any such phenomenon 
due to the rarity of heavy nuclei in the helium synthesis phase of the early universe. 
The remaining discussion will specialize to the case of an SU(5) G U T  monopole, but 
may be readily taken over to any other grand unified theory gauge group [2]. We 
shall neglect such complications as the Rubakov-Cailan effect [3], which could 
conceivably enhance the monopolonium formation rates but which we otherwise do 
not expect will significantly change things, e.g. as in hadroproduction, given the 
extremely short time scales that will be involved. 
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2. Profile of monopolonium 

Assume for the sake of discussion that we have an SU(5) monopole separated a 
distance r from an anti-monopole. For SU(5) we assume: 

M x = 5 x l 0  ~4GeV, 

Ot(;UT = ~ at M x , 

M m - - a  I M x = 2 X  10J6GeV. (1) 

The effective Rydberg for the monopolonium system at large separation (r  >> 10 ,3 
cm) is 

R = ,~g4/2h2 = Mm(GeV ) × 293. 

M = ½ M m = reduced mass, (2) 

where gm is the magnetic charge and N the "monopole  number": 

B = r2 , gm e = ~ N h c ,  gDirac = 3.28 X I0 S esu. (3) 

For SU(5) monopolonium the above Rydberg is valid only at distances larger than 
a few fm. As r becomes comparable to (AQcD) the SU(3) color chromomagnetic 
field turns on. The chromomagnetic field terminates at a distance scale of 0.2 
f m <  r < 1 fm due to the confinement effects of QCD, believed generally to be a 
shielding by color-magnetic monopole-like fluctuations in the ordinary QCD vacuum 
[4]. 

For r = 1 / M  w, the U(1) group of electromagnetism decomposes into the U( 1 ) and 
diagonal generator of SU(2) of the full Weinberg-Salam electroweak model. For all 
scales less than 1 fm the various operant-coupling constants are evolving with energy 
by the usual logarithmic renormalization effects. These renormalization effects lead 
to a net evolution of the effective magnetic charge, gm [5]. 

Remarkably, however, the evolution of gm is very small over the full range of the 
desert, even though these various hierarchical effects are setting in and the individual 
coupling constants are evolving considerably in this range. With X a threshold 
parameter  of O(1), the magnetic coupling constant is: 

E ~< 1 GeV, 

I GeV ~ E ~< ~Mzo, 

)k Mz,, _< E _< ~kM x , 

E - XM x , 

g2 = 1 /4e  2, 

g2 = 1/4e2 + 1 / 3 g 2  

g~  = I / 4 g  2 + I / 4 g  2 + 1 / 3 g  2, 

2 __ 
g m -  l /a( ;U1,  

where E is the characteristic energy scale = l / r .  

(4) 
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These follow by considering the SU(5) monopole  vector potential  at the scale 
E = ?~M x where the three coupling constants,  gl, g2, and g3 of U(1) X SU(2) X SU(3) 
are all equal to gOUT (P,~ is the SU(5) normalized U(I )  coupling constant) .  We write: 

__'r(3)- 1 ~r~-~k(I) 1 ~k(2) ~ - ~ .  (3)_ , 

g(iUT 2 g'l 2 g2 3 g3 (5) 

where 

~(3) = diag(O,O, 1, - 1 ,0) ,  

~(') = ~/'9 diag( - ~  ' ¢ ~) ~,- -  3 , - -  3 , - ,  , 

X(2) = diag(0,  0, 0, 1, - 1), 

A '3) = ~/( d iag( l ,  I, - 2, O, 0) .  (6) 

Thus, the resulting force between a monopole  an t i -monopole  pair  is 

, ( i r (3) ~2~ 
IFI = g2/r2 g2 m = s Tr  - -  

Finally, we restore the Weinberg-Salam coupling constant  normalizat ion to obtain 
eq. (4): 

g,  -- g ,  ws  = 'i~ g , .  (8)  

We thus see that at very short distances, gm = I/gGUT, which is the correct 
t 'Hoof t -Po lyakov  result for an adjoint of Higgs bosons and which corresponds  to 
N = 2, or an effective Schwinger charge in terms of the gauge group charge gOUT" 
But at very large distances we have the net evolution of the coupling constants  and 
the conf inement  effects of  Q C D  which shield the 1/g 3 terms and we have a pure 
electromagnetic  monopole  with g,, = l / 2 e .  Hence, the SU(5) monopole  has the 
Dirac value for the magnetic charge. Numerical ly  we see that g2m(r >> 1 f m ) =  ' ~  = 
34.25, while g2(r = M x i ) =  40. The  various hierarchy effects lead to only a net 15% 
change in g~ over the full range of the desert, and we shall ignore these in our 
analysis of monopo lon ium energetics. However,  we will have to include these effects 
in our discussion below of gamma,  Z-boson,  and hadron product ion  via gluon jets. 

Assume now that the monopole  an t i -monopole  pair  is in a circular orbit  about  the 
c.m. We have: 

g2m/r2= M~2r, (9) 
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and the energy: 

E 4 M ~ 2 r  2 -  g ~ / r  = - '  2 = _ ~ g m / r -  (10) 

The system will lose energy by classical dipole radiation and the Larmor power 
formula is indeed valid for monopoles as well as electric charges (the polarization of 
the outgoing photons is of course flipped from electric to magnetic). Thus: 

d E  
dt 

2 _211(02r~2/£3 2 , -2  3 
-- 2 ( 3 ) g m ~  ] / = - - ~ E a / ( g m M m  ¢ ) ,  ( l l )  

by use of eq. (9). Neglecting the slight renormalization evolution effects of g~, we 

thus have: 

- fL"dE/E4= }( Ef 3 Eo 3 ) =  ?(tf--l(,)/(g~M2mC3) " 

t:" o 

(12) 

o r :  

2 3 3 4 (13) r ~ M m c  ro/8g,,, 

where in the last expression we have made use of eq. (10). 
Hence, the lifetime of the state is determined completely classically and grows as 

the cube of the system's initial diameter. In table 1 we give numerical values of the 
lifetime versus classical diameter, energy, principal quantum number and v / c .  

Remarkably, a system of a G U T  monopole with r = 10 -~3 cm lives about 43 days 
while with r = ~]3 angstrom, about a tenth the size of a hydrogen atom, we obtain 
10 ~ years! This latter result raises the spectre of relic monopolonium produced in 
the very early universe surviving up to the present and decaying today. We return to 
this question in sect. 4. 

The classical decay of the system may be viewed quantum mechanically as a 
cascade of jumps through sequentially decreasing principal quantum numbers. This 
is the content of the Bohr correspondence principle [6]. The energy is 

E =  i 2 ~ g m / r  = -- R / n  2 " (]4) 

We see in table 1 that the principal quantum number of the instantaneous orbit is 
0(40) as v / c  ~ I. Simultaneously the orbital diameter approaches the core size of 

the G U T  monopole, r ~ l / M  x .  

The instantaneous transition energy is given by 

(, l )  
E ' = R  n2 ( n +  I) 2 = 2 R  . (15) 



474 C.T. Hill / Monopolonium 

TABI.E I 
Monopolonium propertics 

Classical Binding Transition Principal 

diameter Lifet ime energy energy quantum 
(cm) (see) (GeV) (eV) number v/C 

10 -~ 3 . 7 1 × 1 0 2 2  3 . 3 5 x l 0  5 1 . 6 1 × 1 0  7 4 .17Xi0~1  4 . 1 0 × 1 0  ii 

10 " 3.71 x I() TM 3 . 3 5 ×  10 -4 5 . 0 9 ×  10 ~ 1.32X 10 It 1 .30x  10 m 

10 m 3 . 7 1 x l ( ) l s  3 . 3 5 × 1 0  ~ 1.61 × 1 0  4 4. L 7 × 1 0  m 4 . 1 0 × 1 0  m 

10 iI 3.71 x 10 L2 3 . 3 5 ×  10 -~ 5 .09X 1 0  3 1 .32× 10 m 1 .30x  10 ' 

I0 I-' 3.71 x l 0 ' ~  3 . 3 5 X I 0  I 1 . 6 1 x l O  I 4 . 1 7 × 1 0  ~ 4 . 1 0 x l 0  x 

10 13 3.71 X 10t, 3.35 5.09 1.32 X 10 '~ 1.30 X 10 s 

I0 D4 3 . 7 1 × 1 0  ~ 3 . 3 5 × 1 0 1  1.61 × 1 0 - '  4 . 1 7 × 1 0  ~ 4 . 1 0 x l O  ~ 

I0 ,5 3.71 3.35 x 102 5.09 x 103 1.32 × 10 ~ 1.30 × I0 v 

10 it, 3 . 7 1 ×  10 ~ 3 . 3 5 × 1 0 3  1 .61× 10 s 4 . 1 7 × 1 0 7  4 . 1 0 × 1 0  7 

I0 Ls 3 . 7 1 X I 0  '~ 3 . 3 5 × 1 0  s 1 .61×1( )  x 4 . 1 7 × 1 0 6  4 . 1 0 × 1 0  t, 

1 0  z" 3.71 x l 0  IS 3 . 3 5 × 1 0 7  1.61 × 1 0  tl 4 . 1 7 x l 0  s 4 . 1 0 ×  10 ~ 

10-z.~ 3.71 × 1 0 - ' l  3.35 × 1() ~ 1.61 × 1014 4.17 x 10 a 4.10 × 10 4 

10 .'4 3 . 7 1 × 1 0  _'7 3 .35×10~1 1 .61×101~ 4 . 1 7 × 1 0 3  4 . 1 0 × 1 0  ~ 

I0 zt, 3.71 x 10 ~~ 3 .35×1013  1.61×102'~ 4 . 1 7 × 1 0 2  4 . 1 0 X 1 0  -' 

10 _,x 3.71 x 10 TM 3.35 x 10 Is 1.61 × I() -'3 4.17 × I01 4.10 x I0 I 

The classical Larmor power formula for the rate of producing photons of energy, E', 
is expected to be quite accurate for n > 1 (we note in passing that even the 2P --, 1S 
hydrogen transition rate can be computed to 30% accuracy classically [6]). The 
instantaneous value of n gives, of  course, the total number of quanta radiated with 
energy E > E'. For all of our subsequent discussion, excluding the core burst, n is 
safely > 40. 

From eq. (15) we have the differential number of photons radiated in a window of 
energy E' to E' + d E': 

dn 2t/3R1/3 
= ~ ( E ' )  -4/3 . (16) 

d E---s 

The system decays by emitting photons until E' becomes greater than the pion 
threshold, when r ---, 10- 18 cm and the lifetime remaining is 10- 9 s, and n = 4.2 x 106. 
Here the system is beginning to radiate both photons and gluons by classical dipole 
transitions with relative probabilities that may be read off from eq. (4): 

Pv:Pgluo. ~ l / 4 e 2 : ( 1 / 3 g ~ ) f ( E ' ) .  (17) 

H e r e , / ( E ' )  is an unknown hadronic threshold function which is zero for E' < m~., 
and should approach unity rapidly as E' ~ 1 GeV. A few low-energy hadrons are 
expected in this phase of the decay, but rapidly as E' exceeds 10 GeV, the gluon 
production leads to the formation of jets of hadrons. Since this behavior sets in when 
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the remaining lifetime is only 10-12 s while the principal quantum number is of 
o r d e r  10 6 we do not expect that the jets would be resolvable as "'spikes" of hadrons 
until very high energies (see sect. 3), but rather as a continuous distribution in space 
which may follow the 1 - cos 2 0 spatial distribution of the Larmor radiated gluons 
reasonably well. Below we consider both the multiplicity and energy distribution of 
the hadrons in the resulting jets. 

Furthermore, as the system passes through the principal quantum number, n = 4 
× 10 5, the Z ° threshold opens up as the U(1) of electromagnetism decomposes into 
the U(1) and diagonal generator of the SU(2) of the electroweak theory. Now the 
relative probabilities of photons, Z-bosons, and gluons become: 

( cos2va~_.~ 2 sin2v~ ), 
P~,: Pz"" Pgluon- g2 + g2 

( sin2 W  
X g~-;-- + : 4 /3g~ ,  (18) 

g2 ] 

where ~,,,, g~, g2, g3 are, of course, energy dependent. In fig. 1 the normalized 
probabilities to produce the three different quanta are plotted versus In E from 1 
GeV up to the G U T  scale. Here we have built in threshold factors of the form: 

E -  Etm)/ l  - E 2 / I '  0( (19) 
g 2 ] ' 

- - " I  f I I I I I 

i . 0 -  

.8 --  " . . . .  Pgruon 

. . . .  Pz*  

.4 L- 

I /, o,°.,oO'" 
.2 / o,,,°,oO,°°'°'''°'" 

5 I0 15 20 25 30 35 
In (E) 

Fig. I. Normalized probabilities, py, Pz", P~l~o.. 
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and we have taken p = 2 though the overall physics is insensitive to the choice of 
p > 1. We further choose Eth r = 1 for gluons and Mzo = 95 GeV for the Z-boson. 
Above all thresholds we note that the three normalized probabilities are simply 
expressed in terms of the running coupling constants: 

' +g l / _ '  
P~' g2+g~[g~ g ~ l D "  

1 pz,,= (2/(g21+ g~))-~ , 

1 
P~uo. = ( 4 / 3 g  2) D '  

D = i/g2t + llg~ + 413g~. (20) 

From eq. (16) we therefore have 
energy window E to E + dE:  

the number of quanta of species i produced in an 

dn, 21/3R I/3 
dE 3 P'(E)E-4/3" (21) 

Quantitatively we note that the direct rate of production of gammas exceeds that of 
Z-bosons which in turn greatly exceeds that of gluons until very high energies 
(provided we are above the Z°-threshold). We find by a numerical integration that 
from a scale of 1 GeV up to M x that the total number of direct photons is 4 x 106 
while there are 2.3 x 105 Z-bosons and 1.3 x 105 gluons produced. In fig. 2 we plot 

the three multiplicity distributions. 

dn 
d-q~7-n,E) 

I I 
I 

10 8 ~ dng It~n 
d in (E) 

10 4 

lO z 

dnza 
d m (E) 

_ _ ~  dny 
d hn (E] 

/ ...... 

. . . . . . .  ~ ~  
I 

I ' I L I I 
'0  20 50 

In (E) 

Fig. 2. 3', Z o, gluon d ln(n ) / d  In E versus In E. 
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The fragmentation of gluons into high multiplicity jets of hadrons and secondary 
decay products, including photons from ~r ° decays, substantially modifies the 
spectrum. Most of the relatively soft photons will be secondaries in this range. We 
first estimate the total yield of hadrons. In QCD the multiplicity of charged hadrons 
produced in a gluon jet of energy E is expected to be given in leading log QCD [7]: 

Nh( E ) = a e x p ( b ~ / I n (  E T A )  ) + n o, (22) 

where a and n o are uncalculated and b is determined: 

b = 4(CA/bo)  '/2, b 0 = 11 - ~n,, C A = 3 . (23) 

Phenomenologically, the PETRA data including quark jets is well fit by b = 2.7 _+ 
0.28, fully consistent with the above result, with a = 0.027 and n 0 = 2 [8]. However, 
the PETRA data is equally well fit by a naive statistical model of jet fragmentation 
which predicts: 

N h ( E  ) = a,EI/2 

and phenomenologically a '  = 2.2. Though we expect the leading log QCD result to 
be correct up to the enormous energies of the gluons we are considering, it is 
nonetheless useful to see how sensitive our results are to the choice of fragmentation 
multiplicity. The total hadron yield is thus determined by convoluting the gluon 
distribution with the fragmentation multiplicity: 

. 21/3RW3 
N h = (25) 

E o - I 0 3 ' 

We find a total yield of - 1 0  7 hadrons for the leading log QCD fragmentation 
and 7 × 108 for the E ~/2) fragmentation distribution (the naive parton model 
predicts a In E multiplicity in a jet which is already inconsistent with the low-energy 
data and we thus exclude it.) 

We may further estimate the spectrum of hadrons and secondary photons, though 
here we are on somewhat thinner ice. The exact x-distribution for fragmentation of a 
gluon jet is not known, and only a few properties, such as the total multiplicity and 
more recent observations of a peak at very low x have been determined [7]. Indeed, 
it is not clear how much can be determined theoretically. For our purposes the 
important features are to realize the correct multiplicity, assure that the first moment 
of the distribution be normalized properly to unity, and try to guess the correct 
large-x behavior, which we take to be (1 - x)  2. We will build the multiplicity into 
the low-x behavior of the distribution. For the leading log QCD multiplicity formula 
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we find that the following distribution works reasonably well: 

dNh =N(b)exp(b l~n~ ) ( l - x )  2 

dx x ~  -~lx 
(26) 

where N(b) is determined by the condition that the first moment of the distribution 
is normalized to unity (energy conservation). We obtain: 

-', 

l(b) = ~v~-(erf(½b) + 1). (27) 

Since N(b) is determined uniquely by b, the overall normalization of the multiplic- 
ity, i.e. the parameter a in eq. (22), is now fixed to be: 

2 N a=(3) (b)/b, (28) 

where the factor ~ comes from counting in eq. (22) only the charged hadrons. We 
find: for b = 2 . 6  (n f=6) ,  a=0.041;  b=2 .8 ,  a=0.026;  b=3 .0 ,  a=0.019.  Since 
aexpt =0.027 +0.01 and b~xpt = 2.7 +0.28 (note that our definition of b in eqs. 
(22)-(26) differs by a factor of ~ -  relative to that in ref. [8]) we see that the simple 
one-parameter distribution of eq. (26) predicts correctly the overall normalization of 
the multiplicity. This suggests that energy conservation is a sufficient constraint with 
the low-x behavior of the distribution to determine the overall multiplicity. For the 
E ~t/2~ multiplicity we may use: 

dN h '~ 3/2(1 x) 2. (29) = 1"6X dx 

The total hadron multiplicity is taken to be: 

i l  
N h = dx(dNh/dx), (30) 

which may be seen to yield the correct multiplicity growth with energy when the 
infra-red cutoff, e, is taken to be: 

e=tt/Eje ., ~ -  1GeV. (31) 

The fragmentation distributions are converted into hadron energy distributions 
and are convoluted with the gluon distribution from eq. (21) to obtain the hadron 
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energy spectrum, e.g. for the leading log QCD distribution we obtain: 

479 

dNh (2R)  ' / '  ( E )2 exp(bv/ln(E'/E) 
dln-----E = -----u--N(b)fLM- ~ i-- E-- (E')-4/3 v/In(E,/E) Pg,.o. ( E ' )  d E ' .  

(32) 

We choose as the upper limit of this convolution the energy scale corresponding to 
the point at which the cores of the monopoles are overlapping. To this we will add 
below the contributions from the final burst, but this will be found to be a small 
correction to the total hadron spectrum. The hadrons we count do not include the 
neutrals that end up as photons. Here we may again appeal to the PETRA data in 
which the naive expectation that about 30% of the total distribution converts quickly 
to photons is born out. The results are plotted in fig. 3 along with the gluon 
distribution, for both multiplicity growth assumptions. The photon distribution can 
be taken to be 30% of the hadron spectrum. We see that the hadron spectrum is 
somewhat softer than the gluon distribution, as expected, though it tails up to 
E = 5 x 10 j~. The hadrons ultimately end up as gammas, electrons, nucleons and 
neutrinos, as well as ~"s and muons, at a distance range applicable to astrophysical 
detection. We note that at accelerator energies the baryon yield in jets is anoma- 
lously higher than one would have expected from naive hadronization ideas and 

/ 2  lOeb_ . .  , . . . . .  E jet multiphoty 
" " . , ,  . . . . .  leading log OCD 

I " ' ' .  - - - -  gluons dNh ~ " .  
din(E) 106 ". 

~ " ' , . .  
10 4 L ~ ~ " "  •. 

" ' .  

i ~..,. ~o21 
10 2C 30 

In (E) 

Fig. 3. Charged hadron spectrum (a) leading log QCD, (b) E I/2 multiplicity, and (c) gluon spectrum. 
y-distribution- .i hadron distribution. 
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constitutes about 10% of the spectrum. This may continue up to the energies under 
consideration here and, if so, we may have a novel mechanism for producing cosmic 
rays by the decays of relic monopolonium (see sect. 4.). 

3. The burst 

Reference to table 1 shows that at a principal quantum number of n = 40 the 
classical diameter of the monopolonium system has shrunk to r = 10 -28 cm = I / M  x 

and the cores of the monopoles themselves are now overlapping. Simultaneously 
v / c  ~ 1 and our classical approximations are invalid. At this stage we still have 
about 75% of the system's total energy to liberate. Here we expect to produce a burst 
of particles of all types contained in the bare unified gauge theory. 

A simple approximation to the physics of the burst is to assume that the system's 
total energy is uniformly distributed throughout a local region of diameter 2 / M  x .  

Particle multiplicities are then determined by a universal amplitude and by phase 
space alone. Similar statistical models are successful in hadroproduction at high 
energy [9]. Such a model neglects coherent or thermalization phenomena. Should the 
system go into a "fireball" phase at this point we expect a much higher yield of 
lower energy particles and a lower yield of the unified group gauge bosons, X and Y, 
etc. 

The universal amplitude, A, will be seen to have dimensions of area and is 
expected to be related to the volume of the system: 

A - ( ' 3 )2/3 10.4 
~ r R  - 2 . 6 R  2 - - -  (33) 

M~' 

In what follows we closely parallel the analysis of ref. [10]. 
The partial width to produce n identical bosons is 

A"( d3p~ (2~r)484(Q_Ep,)). 
F"= ~. ,-,(I I (z~)32E ' (34) 

We neglect here an overall common normalization which we will not need to know. 
It is expedient to consider the quantity: 

= An( d3pi ,~E r 4xe- ,Q-~p,) .x)  f - I f  e e-aEoI"n 
i= I (21r) 2E i 

= -#(.fd'xe-'Q" d3p e i p ' x - a l ' -  , 

(2~r)32E 
(35) 

where Q = (E0, 0, 0, 0) and use has been made of energy conservation, E 0 = Y'E, and 
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the energy-momentum delta function has been replaced by its integral representa- 
tion. In the end the parameter, a, will cancel. We may perform the integral in the 
bracket for massless particles, P0 = E0: 

e_~eoFn An { 1 } 
= vf. fdte-' o'fd3x 47r2((a_i,)2 +x 2) 

Ao/ 
n! dt 

2~re(2n - 4)!e-,Eo, 

( 4 ~ r 2 ) ' ( a -  it)zn-322n-3(n - l ) ! (n  - 2)! 

A n l Egn-4e -dE° 

n! 8 (16~r2) n 2 ( n _  l ) ! ( n - 2 ) !  
" ( 3 6 )  

or: 

F n (16~r2) 2 AEd [n!(n-l)!(n-2)!]- '  (37) 

- 8 E o '  

We can apply the above result to each of the degrees of freedom of the grand 
unified gauge group, including the superheavy bosons, provided the mean energy of 
each particle is large compared to its mass. If the mean energy is comparable to the 
heavy masses, we expect the heavies to be suppressed by an additional factor of 
exp( - Mh/E) in the above expression. For the massless spin-one gauge bosons there 
is of course an extra statistical factor of 2 relative to spin-zero Higgs bosons. In 
general we have K "flavor-color" degrees of freedom each of which may produce n 
particles. Thus, the overall multiplicity is readily computed as follows: 

= . r "  , ( 3 8 )  

n =  I I 

and ~ is roughly the value of n maximizing F n. From 

Fnocexp n m - - ~  nlnne - ( n - 1 ) I n  n-e 1 - ( n - 2 ) l n  , (39) 

we obtain: 

AEt~ I t/3 
- ( ~ ] e - 25. (no) 

Eq. (39) is, we emphasize, the total number of fundamental degrees of freedom of 
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equal statistical weight that are produced. The reader may note that we should in 
principle have calculated the width into n particles of flavor-color 1, m particles of 
flavor-color 2, etc. From this we would then calculate the total multiplicity over all 
flavor-colors. However, for flavor-colors having the same statistical weight the result 
would be identical to that of eq. (40). We assume that each helicity state of a vector 
has the same weight as a single Higgs scalar. We note that this result is reasonably 
close to the multiplicity we would have obtained by naively extrapolating the 
classical Larmor result down from n = 40. Here, however, the energy is uniformly 
shared by the outgoing particles. The average energy per particle is E = 1.2 x 10 ~5 
GeV which makes our neglect of superheavy masses reasonable. 

In SU(5) we have 24 gauge and 24 Higgs bosons. In counting the number of X 
and Y bosons we must take a total of 12 × 2 degrees of freedom from the gauge 
bosons and 12 x 1 (longitudinal) degrees of freedom from the Higgs. We further 
have a total of 24 x 3 degrees of freedom altogether. Thus the fraction of X and Y 
bosons produced is 1 2 x ( 2 + 1 ) / ( 2 4 x 3 ) = ~ . ~  Thus 25 = 12 X and Y bosons are 

expected. Table 2 presents the approximate yields and fractions in the burst phase of 
the various SU(5) gauge and Higgs bosons. 

The decays of the superheavy gauge and Higgs bosons as well as the fragmen- 
tation of the gluons will produce very high energy hadron jets as well as leptons. 
With an average energy of O(10 ~s) GeV the expected multiplicity per jet is = 10 4 
from the leading log QCD and, though it somewhat increases the multiplicity at very 
high energies, it is a negligible correction to the hadron spectrum of fig. 3. 

The particles produced in the burst will decay into leptons, quarks, and the lighter 
gauge and Higgs bosons. Of the 25 degrees of freedom initially excited, roughly 
25 × 2 x 8 / (2  × 24 + 24), or - 5 are gluons. The remaining 20 objects will typically 

decay into two-body final states. Ignoring gauge bosons, we expect typically 25% of 

TABLE 2 
Fractions and approximate yields in burst 

Species Fraction Approximate yield 

x.~ ' 6 
Y,V 1 6 
W ' W - ,  ~ L 2 2 
Z o J 
gluons 92 6 

Y 3~ 0 
color 8 / L 
Higgs . 9 3 

weak } 
Higgs 24 1 
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these will be leptons and 75% quarks. Thus we get roughly 10 leptons and 30 quark 
jets in addition to the 5 original gluon jets. These jets should be distributed more or 
less isotropicaily in space and might be cleanest along the z axis of the system where 
the 1 - c o s 2 ( 0 )  Larmor distribution is zero (of course PT effects and multiple 
scattering will give a non-zero background here). The typical jet opening angle at 
these energies is [11] 

80 - aE- 1 / 4  - -  0.38E- 1/4(rad) - 22°E - t/4 

- 4 x 10 -.3 degrees, (41) 

thus we have very highly collimated jets. We note that even for the Larmor 
spin-down the azimuthal distribution of hadrons will not be entirely uniform. The 
last revolution corresponds to all jets of energy E > E '  where: 

f s ,  dO dn [MxdO (2R)  ~/3 
, d---n d--E dE  =Jr." ~ ~ E - 4 / 3 d E ( P g l u ° n )  = 2~r, (42) 

thus: 

dO n 2 [ 2R ~ 2 / 3 1 .  (43) 
dn g6 (40)3 ' 

1.2 × 1013 
21r , E '  - 1.9 x I0 l? GeV, (44) 

E '  

and the fraction of the full 2¢r azimuthal angle occupied by the hadrons in jets is 

1 Mx I/4) dn3 
f = ~ ft.:' (0.37 E ~ -  d E - 0.068 << 1. (45) 

The enormous yield of hadrons would require that to detect the leading decay 
fragments of the X, Y and superheavy Higgs bosons in a monopoionium decay event 
one must be able to cut on all hadrons of energy less than about 5 × l0 ~~ to l0 ~4 
GeV and focus upon the very low-multiplicity particles in the 10 ~4 to 10 ~6 decades. 
These objects will carry the information about the grand unified gauge group. For 
example, it may be possible to detect the CP violation in the decays of superheavy 
Higgs (or gauge) bosons by counting a net baryon excess in the leading particles 
(expected optimistically at a l0 -3 level). Thus one could test in principle the 
mechanisms by which the universe acquired a net baryon number with = 1000 
monopolonium decay events. This would be extremely difficult at best. 
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4. Relic monopolonium 

The crucial observation of the present section is that, as stated above, objects of 
an initial size of order a tenth of an angstrom or more, have lifetimes equal to or 
exceeding that of the universe. This suggests the possibility that such monopolonia 
were formed in the early universe and may have survived up to the present. Some 
fraction of these will be decaying presently and the high multiplicity of final 
fragments may be observable. Alternatively, the larger objects are presently spinning 
down and should be producing a diffuse radio background. From this we can place 
joint limits on the masses and closure fractions of arbitrary monopoles as this part of 
the annihilation is completely insensitive to the G U T  assumption. We will con- 
centrate presently on the formation of relic monopolonium and leave many ques- 
tions of related interest to future discussions [1]. 

Our approach will be to give first a very general estimate of the expected 
abundance of relic monopolonia from statistical mechanics by computing the 
equilibrium fraction of monopolonia at a fixed temperature in the solution of 
monopoles and antimonopoles via a classical-differential version of the Saha equa- 
tion. This will immediately translate into the decay rate in a typical comoving 
volume. We will not see in this estimate the specific physical formation mechanisms, 
and we shall follow with an estimate based upon a definite process. Here we will 
consider the same mechanism by which various authors have attempted to rid 
cosmology of an over-abundance of primordial G U T  monopoles. We will look at 
collisions between "cool" monopoles and antimonopoles that are hard enough to 
capture into loosely bound states by the emission of classical Larmor radiation. 
Though the impact of such events upon the background density of free monopoles is 
insignificant, nonetheless a substantial abundance of monopolonium is generated. 
This specific process will yield a comparable supply to that suggested by our more 
general statistical argument. 

We see that the binding energy of monopolonia with sizes between ~,, to 10 
angstrom ranges from = 340 keV to 3.4 keV. Thus, this is the relevant temperature 
scale for the formation and corresponds to the universe age of 10 to 104 seconds. We 
believe we have a decent understanding of cosmology in this epoch since the 
primordial helium abundance can be reliably calculated and agrees with observation. 
It is known that for our G U T  monopoles, the ratio of the monopole density to 
photon density must be less than 10 ~9 during this phase [12], and is probably at 
least as small as 10 -24 , since that is the present allowed fraction given the closure 
density today and there is no known mechanism for significantly reducing monopolc 
abundances since that time. Our point of view is to assume that they must have been 
in an acceptable abundance during this epoch and to proceed to obtain essentially a 
lower limit on the resulting monopolonium abundance. 

First we shall assume a uniform distribution of monopoles and antimonopoles 
with a common density r M. At a temperature T <  M we will have a Maxwell- 
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Boltzmann distribution: 

[ M 13/2 [ - M v  2 
rM[~--~] exp~ ~ - - )  d~v d3r (46) 

assuming thermal equilibrium. This does not require necessarily a thermal equi- 
librium with radiation, since it can arise by the general red-shifting down from the 
primordial monopole production epoch. Indeed, a collision between a monopole and 
a photon of energy T exchanges only the infinitesimal energy T 2 / M  and it requires 
many collisions, = M/T ,  for a thermalization to take place for small T. However, 
collisions between monopoles themselves lead to efficient energy exchanges and the 
thermal distribution should be maintained by these, treating the interaction as an 
instantaneous Coulomb potential. 

Consider a monopole and antimonopole pair, each described by the distribution 
of eq. (45). The equilibrium distribution of pairs that are bound with binding energy 
in the range E b to E h + d E  h is given by 

I ) I ? } ( ) :m/,r, - - : M y :  + - 
M 3f d3vl d3v2d3r! d3r9 exp d / =  ~ _ T 

2 
X ~ ( E  b - -  ½ / ~ ( l )  I - -  19 2 q-- g2m/lr , - r2l)dEbrwr ft. (47) 

It is convenient to go over to c.m. positions and velocities, V=  ~(v E + v2), u = (v I - 

v2), R = ½(r I + r2), r = ( r  I - r2): 

d f =  ~ d3Vd3Rd3ud3rexp 2T exp 2 T + rT ] 

×8  - IEul - ~Mu 2 + dEbrMr~ 

( 21 2M ]3 /2 (d3Vd3Rexp (_½(2M)V  ~)drM~.,  
2rrT ] J (48) 

where the result has been factorized into a MaxwelI-Boltzmann distribution in the 
bound state with mass 2M times the density fraction of the bound states in the 
background monopole anti-monopole gas: 

drMG-= ~ d3ud3r6 -[Eb[ -- ½/~u 2+ g:  e(ffu'-/2r-g'/'r)rMr~dE.. 

(49) 
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Performing the d3u integration gives: 

/ drM =f(Tg_ ) 2~0t ~gm r --[Eb[) elE"l/TrMr~d3rdEb (50) 

- dEb ( 2 -~b  ) 3/ZelEbl/r8qr2g6mfo'y2(1--1) 3/2d (51) 

Thus, performing the y integral gives: 

lzbdE b - - ) ( ~ 1  ]13/2 drMff= --y--( tlr~ rMrffelL,L/rg 6" (52) 

This is simply a classical version of the Saha equation, which may be viewed as 
formation by multibody monopole collisions in thermal equilibrium. In a comoving 
volume we have N M monopoles. We may write: 

r M = aTx(rM/rv), a = }6~r 2 . (53) 

Thus the number of bound states in the comoving volume with binding energy E b to 
E b + dE  b becomes: 

( F M dNMff= -~b ~ elt:"l/rg6mN'~t\ rv ) .  (54) 

The ratio rM/r ~ is cosmologically invariant for the low formation rates discussed 
here. 

We see that the binding energy enters an exponential and thus the most probable 
states by eq. (54) have infinite binding energy. This is the well known disease of the 
Coulomb gas and it is readily interpreted. In general, as the members of a pair get 
very close together the Bohzmann factor in eq. (47) is diverging. But such a pair is 
also no longer in thermal equilibrium and is dominated by the local mutual 
Coulomb force. Only when the energy is within an order of magnitude of the 
temperature is the process expected to be reliably described as an equilibrium one. 
Thus we may only apply eq. (54) for E = tiT, where ~ is a parameter of O(1). Thus 
we have for the differential number of objects instantaneously bound with energy E 
to E + d E :  

MM Eb ,6O ,~ ~ e~g6 Nm -~ , (55) 

where N m is the number of monopoles in a comoving volume. 
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Strictly speaking, these objects are not bona fide bound states, but only thermal 
fluctuations of an arbitrary pair into a state of locally negative total energy. They are 
the equilibrium fraction of the monopolonia dissolved in the monopole anti-mono- 
pole gas. However, as the system cools we expect that for an appropriate choice of 
7 / -  O(1) this abundance of objects will be left behind as bound states since their 
binding energy will exceed the thermal energy available to dissociate them. Thus eq. 
(55) is indeed expected to describe the relic abundance of monopolonia formed as 
the universe cooled through a temperature of order the binding energy. 

The formula of eq. (55) possesses a pleasant scaling behavior. Reference to the 
lifetime formula of eq. (12) shows that we may write 

3dEh  d r  
(56) 

E h "r 

Thus, the decay rate of monopolonia in a comoving volume follows immediately: 

/ 1 \3/2 {I.M ~ dNMM 1- (~'n '5) ( 2 " ~  ) eng6mNm t ]  (57) d~" z 

We see that the decay rate increases as the age of the comoving volume decreases. 
Today, a typical cubic light-year would contain roughly 3 × 10 32 G U T  monopoles if 
we saturate the closure density. From eq. (57) we obtain - 350 decays of mono- 
polonia per year per cubic light-year, assuming the conservative rM/r ~ = 10--'4. and 
3.5 × 10 ~z saturating the helium abundance limit of rM/r Y = 10- 19. We may further 
estimate the total fraction of monopoionia by converting from lifetime to diameter 
through the convenient scaling law: 

3 d r  dT 
F T 

(58) 

Thus, we may integrate from a radius of r = ~, angstrom up to an upper limit. R. for 
which we expect the formation to terminate: 

\ 3/2 / r \ 
NMM g6(/ ,~.5)  1 / e , | , M | l n  R 
N.  ~ 1  \ r v }  ~o 

(59) 

We thus see that the specific choice of R is irrelevant as we are only logarithmically 
sensitive to it. In practice we would expect R to correspond to a value for which a 
monopolonium is readily ionized by a magnetic field or other traumatizing event (we 
note that at ~ .~, it requires a B field of order 10 I° Gauss to ionize). Putting in 
numbers yields about 10 t4 (or 1019 assuming the larger monopole to photon ratio) 
G U T  monopolonia per cubic light year, or a fraction of 1 0  ts monopolonia to 
monopoles. 
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In fact, we expect that eq. (59) with rt = 1 probably underestimates the abundance 
of monopolonium since it makes no reference to specific reactions such as capture 
by the emission of radiation, scalars or other particles, and considers only monopole 
collisions in thermal equilibrium implicitly via their instantaneous Coulomb poten- 
tial. We may directly estimate the formation of monopolonium by radiative capture 
essentially making use of the cross section: 

( g'°! ' (60) 

where the quantity in braces is familiar [12], but we have obtained the extra overall 
numerical factor = 9.6. E 0 is the kinetic energy of an incident monopole at infinity 
which is of order the temperature (it would be a straightforward analysis to fold in 
the complete thermal distribution here). This follows by demanding a classical 
collision between monopole and anti-monopole during which there is sufficient 
acceleration to radiate away the energy by the Larmor power formula. In fact, we 
may use a more general differential cross section: 

dEb _ Eo Eo+ IEbl -~- , (61) 

which is the cross section of capture into bound states of binding energy E h. The 
rate of formation of monopolonia into these states at temperature T in a given 
comoving volume is: 

1 d N ~  d(ov) 
rM dEh 

( ~ 5 ) ( 1 ) ' / 2 (  1 7/5(r,n)(~__G~r2)T3~9/,o. (62) 
= (3 .8 )  T +  IEhl ~ r~ 

We may convert the differential formation rate m time into a rate in temperature 
in a comoving volume (thus the Hubble expansion terms do not appear). This may 
be integrated over all temperatures and we note that the integral receives most of its 
contribution for T = E b as expected. The result is 

- l/2g4mMpE~9/lO(rM) dNMff = (3 .8)(~r2)(~6rr3)  ,/2g? ),,/,o - -  Nml" 
dF~ b ( , q  r, 

gt = ½ (no. of boson helicities + ~ no. of fermion helicities), (63) 



c.T. Hill / Monopolonium 489 

where the integral is 

.~c dx / 
I = / = 2.2. 

J~ xl/2(l * x )  \ 7 / 5  
(64) 

The final monopolonium abundance is numerically: 

N,~t ,ffNM 20-8g4m M P ( M )  , / ,o( rm)  
~r~ 

(65) 

and we have the decay rate: 

dNMM - ( 2"O8 ) g4mMp( Eh)U° ( rM ) Nm - 2.9 × lO2/cubic light_years. (66) 
dr  \ - ~ - r  ( /~)l l /10 r~, 

This is remarkably close to our preceding result even though it involves somewhat 
different physics. The exponent ~j is sufficiently close to unity that our scaling is 

approximately valid as well. The rough agreement between these results encourages 
us that they are probably correct though a more detailed analysis of specific 
mechanisms is desired. Moreover, perhaps our choice of ~ = 1 in eq. (57) is overly 
restrictive. If r /=  10 the rates and fractions are increased by a large factor of 256, 
and as rl --* o0 all monopoles become bound into monopolonia. We can envision a 
number of additional mechanisms that might significantly enhance the formation 
rates and we regard the quoted results as probable lower limits on the formation. 

We will not give here a detailed description of the observability of relic mono- 
polonium. However we will remark that we can place non-trivial limits on the 
monopole masses and closure fractions from the above considerations and that wc 
believe that the decay products of these systems might be detectable in a variety of 
experimental configurations. A systematic discussion of the observational implica- 
tions, constraints, signatures and other general considerations is in preparation [1]. 

I have greatly benefitted from discussions with Prof. J.D. Bjorken with whom 
many of these ideas were initially developed. Also, Prof. D. Schramm has contrib- 
uted in developing the cosmological arguments. I have also benefitted from discus- 
sions with Prof. W.A. Bardeen, Prof. J. Ostriker, Prof. J. Rosner and Dr. R. Orava. 
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